ENGINE CONTROL STRATEGIES

Pi Innovo Solution

Pi Innovo provides configurable Simulink®model-based control systems strategies for engine development. These include control systems strategies for Diesel, Gasoline, and Gasoline Direct Injection.

OpenECU® and the Pi Innovo Engine Control Strategies are an invaluable tool in the development process for a wide range of engine systems and components. Any type of engine can be rapidly equipped with a Pi Innovo engine controller that gives unprecedented access to modify the engine control logic. This capability is essential when developing new engine management systems, and also when evaluating changes to engine and emissions components. For example: evaluation of superchargers, or repurposing an existing engine to new uses such as alternative fuels or hybrid powertrains.

The Pi Innovo Engine Control Strategies include the following software features:

  • Air Demand
  • Air Fuel Ratio Control
  • AirMass Estimate
  • Accelerator Pedal Demand
  • Base Fuel
  • Base Spark
  • CatalystManagement
  • Closed Loop Fueling
  • Decel Fuel Cut
  • O2 Heater Control
  • Exhaust Gas Recirculation
  • Engine Load Model
  • Engine Rev Limiter
  • Engine Running Mode
  • Electronic Throttle Control
  • Evaporative Emission Control
  • High Pressure Fuel Pump
  • Idle Control
  • Injection Timing
  • Anti-Knock
  • Remedia l Actions
  • Multiple Injection
  • Residua l Fuel Compensation
  • Spark Arbitration
  • Spark Timing
  • Torque Arbitration
  • Transient AFR
  • Transient Spark
  • Tu rbo Control
  • Variable Cam Phasing

Engine Control Strategy Features: Diesel

This product features a set of Common-Rail Diesel (CRD) strategies suitable for all types of compression ignited fuel engines (CIDI).


Engine Control: Gasoline (Port Fuel Injection)

Pi Innovo offers Engine Control Strategies pre-configured for PFI engine systems.
This product includes a set of features that are suitable for all types of spark-ignited engines. This strategy is also applicable to alternative spark-ignited fuels including ethanol, LNG, and LPG.



Engine Control: Gasoline (Direct Injection)


The GDI strategies are an extension of the Gasoline strategy, with the following notable differences:

  • Fuel pressure controls, for the electronically-variable mechanical high pressure GDI fuel pump
  • Facility for multiple injections per firing.

The GDI fuel pump is unique, compared to port-fuel-injection systems, because it is driven by a set of lobes on the camshaft, and its flow control valve must be actuated synchronously with the camshaft position. This results in fast response of the pump to achieve the target fuel pressure, allowing the user to vary the fuel pressure widely (typically from 25 to 150 bar fuel pressure), according to the different engine operating conditions.With GDI, fuel pressure therefore becomes an additional tool that calibrators can use to achieve conflicting performance goals, such as light-load fuel dose accuracy, and peak-output fuel dose quantity.


Engine Deployment Approach

Pi Innovo has developed a systematic approach to replacing an OEM ECM, in order to provide full access to the engine control
software and calibration.



OEM ECM Baselining

The first step to replacing an OEM Engine Control Module (ECM) is to understand the inputs, outputs and mechanical configurat ion of the engine. To facilitate this work, Pi Innovo uses a specially designed break-out box and in-line connector setup that allows easy access to all the pins of the OEM ECM. Sensor and actuator data is recorded, for future comparison with the Pi Innovo engine control behavi ors.


Model Configuration

The second step is to configure the Pi Innovo Engine Control Strategy for the desired engine, based on the engine data gathered previously.

Data analysis and initial calibration reverse-engineering activities are conducted to define the injection timing and injection quantity targets, turbocharger boost pressure targets, VVT commands and fuel rail pressure setpoints. Simulink models are configured a ccordingly, including software modules for Turbo, EGR, VVT and any other engine actuators that are present.


HIL Testing

The third step involves configuration of a crank and cam signal generator and HIL, to confirm crank-angle synchronization and basic functionality of the Engine Control Strategy. This includes verification of injector peak-and-hold current control waveforms, spark output activity, ETC position control, and bench testing of any special actuators that are present.


First Fire On-Dyno

The fourth step is to use a motoring dynamometer to establish crank and cam sync, verify angular outputs against baseline data, confirm injector firing bymonitoring injector current and fuel rail pressure, tune closed loop fuel rail pressure control, and tune closed loop cam phasing control.

The goal during this step is to achieve stable engine running at low loads, using the reverse-engineered baseline calibration.


Calibration Development

Once the engine is running on-dyno, the software calibration is developed to a level that replicates the OEM ECM steady-state performance. This calibration activity includes tuning of closed-loop AFR control, boost pressure control, and knock detection and mitigation.


Comparative Testing

After steady-state calibration development is complete, steady state fuel consumption and emissions data can be gathered and compared to the baseline data collected in earlier phases.

The engine control system is then ready for the customer to continue to use for any experimentation or further development the customer desires. The customer retains the source code and all tools necessary to implement changes to software and calibration, and therefore is free to perform this future work independently from Pi Innovo, or with project support from the Pi Team.


More Information


Related Products


We are interested in hearing from you.

Tell us what challenges you are facing